
A new approach for Geometry Friends’ RRT Agents
Ana Salta, Rui Prada, Francisco Melo

INESC-ID and Instituto Superior Técnico, University of Lisbon
Oeiras, Portugal

{anasalta,rui.prada}@tecnico.ulisboa.pt,
fmelo@inesc-id.pt

Abstract—In this document, we present single player our
solution the Geometry Friends problem. A description of the used
algorithm and baseline is presented,as well as the modifications
and additions made to improve the agent. We then show the
results of our tests that prove that our agenst are capable of
solving more levels than the available agents.

Index Terms—Geometry Friends, artificial agent, Rapidly-
Exploring Random Trees, motion control, replanning

I. INTRODUCTION

Intelligent agents and Multi-Agent Systems (MAS) are
becoming more and more popular as they simplify tasks from
our daily activities, the industry world, scientific research and
so forth.

Geometry Friends [1] is a problem designed to provide
new tools to help the development of cooperation as well as
motion planning and control in the Artificial Intelligence (AI)
field. Geometry Friends is a cooperative physics-based puzzle
and platform game for one and, initially, two players, where
the main goal is to control the characters to gather all the
diamond collectibles present in each level. A competition is
taken annually that tests the submitted agents with public and
private levels, to understand whether these agents are capable
of solving the problems without overspecialization.

Here we present a new solution for both agents that can
solve the single player levels of the game, with the prospect
of developing a cooperative version of the agents. We used the
described solution developed by Soares et al. [2] as a baseline
for it has shown good results in previous competitions.

In section II we start to explain the base algorithm used for
our agent as well as the agents used as a baseline. We then
present our solution in section III, where we explain all the
modifications and additions made to improve the agents. In
sections IV it is described how the tests were chosen and the
data was collected, and section IV presents the results. We
then take our conclusions in section VI.

II. RAPIDLY-EXPLORING RANDOM TREES

A. Algorithm

The Rapidly-Exploring Random Trees (RRT) algorithm [3]
was introduced to solve the problems of the other randomized
approaches, like the nonuniform coverage of the state space
and the planning not being suitable for nonholonomic or kino-
dynamic problems. The algorithm is presented in Algorithm 1,
where xinit is an initial state and T is a RRT with up to K
vertices.

Algorithm 1 Rapidly-Exploring Random Trees [4]
1: function BUILD RRT(xinit,K)
2: T .INIT(xinit);
3: for k = 1 to K do
4: xrand ← RANDOM STATE();
5: EXTEND(T , xrand);
6: end for
7: return T ;
8: end function
9: function EXTEND(T , x)

10: xnear ← NEAREST NEIGHBOUR(x, T );
11: if NEW STATE(x, xnear, xnew, unew) then
12: T .ADD VERTEX(xnew);
13: T .ADD EDGE(xnear, xnew, unew);
14: if xnew = x then
15: return Reached;
16: else
17: return Advanced;
18: end if
19: end if
20: return Trapped;
21: end function

If the search is limited by K vertices (iterations), for each
value of K, a random state, xrand, is selected and extended.
The EXTEND function, as illustrated in Fig. 1, chooses the
nearest state to the state x, xnear, already in the tree T , with
the help of a distance metric.

With an input, unew, that can be chosen randomly or by
testing all possibilities, the function NEW STATE is an
attempt to move towards the state x from the state xnear by
applying the action unew to xnear and verifying if xnew is
generated. If xnew is the same as x, that state is considered
reached, otherwise it is considered as advanced. If the state
xnew is not possible due to violations of some constraint, it
is then considered as trapped.

The goal of the algorithm is to search high-dimensional
spaces with algebraic and differential constraints, by biasing
the exploration to the unexplored state space and guide the
search towards the randomly selected states [4].

B. Baseline

The RRT agents were developed prior to the availability of
the game physics simulator. In order to overcome this obstacle,



Fig. 1. EXTEND function illustration.

Soares et al. [2] decided to divide the solution in two sub-tasks,
the planning and the control.

The planning sub-task uses an adaptation of the RRT
algorithm, to search for a possible path. The new states are
generated by applying tactics (simple and complex actions)
and then checked for their validity. The resulting path is a list
of points and their type indicate the actions that should be
taken at the given position. There is also a limit of iterations
that might produce an incomplete plan, but a plan nonetheless.
However, the agent will not attempt to re-plan in order to find
a complete plan or correct it when an action fails, and the
agent might only end up catching some of the diamonds, or
even none, instead of all of them.

The control subtask not only performs the tactics dictated
by the plan, but also makes an estimation of variable values
like the velocity the agent needs to reach certain points and if
it is necessary to perform extra actions in order to complete a
tactic. In addition, a standard Proportional-Integral-Derivative
(PID) controller is used to correct the velocity in real-time.
Certain situations where the agent gets stuck can be detected
and resolved with a subroutine that returns the actions needed
to revert the situation. These agents have proved to overcome
overspecialization and this is the main reason we decided to
use this solution as a baseline.

III. SOLUTION

A. Search

1) Improving the algorithm:
Improving the RRT algorithm has already been subject of
study. We focused on strategies like biasing the search towards
the goal or the region around the goal, the use of Balanced
Growth Trees (BGT) [5] when selecting a state, and the use
of Skills, Tactics and Plays (STP) when selecting an action.

When searching for the nearest neighbor, the RRT algorithm
needs a strong distance metric or it might return not only a
state that is not the nearest, but one that is actually far from
the selected state. In this case, where physics are applied, this
metric is not trivial. The BGT approach tries to avoid this
problem by selecting a state which is already in the tree. To
do that, it checks the ratio between the average of the leaves

depth and the average of the branching factor. If the value is
greater than a defined value µ then a random state that is not
a leaf is returned, else it returns a random leaf.

Even so, our metric proved to be enough to give better
results than using the BGT, tested with different values for µ
and using a bias towards the goal, like suggested by LaValle
et al. [4]. Defining a valid region around the goal has been
difficult but, if achieved, it might give even better results.

The STP approach consists in selecting the action to test
using the STP strategy. A Tactic is a model of an agent
behavior that has a Finite-State Machine (FSM) containing
Skills which return an action given a state. Since a Play is a
model of a group of agents, it does not apply for the single
player context.

Three simple skills for simple cases were worked on: the
agent is on the same platform as a diamond with no obstacles
between them; the agent is on a higher platform than a selected
diamond and has no walls on both sides; the agent is on a
lower platform than the a selected diamond. When selecting a
diamond, priority is given to those on the same platform, then
the highest ones on the highest platforms.

Adding these simple skills has decreased the search time
significantly. Other skills might be added in the future, though
a lower probability should be given to the more complex ones
to avoid overspecialization.

Since trees in this context can be infinite, we try to avoid
the creation of repeated states. We do this by creating a matrix
of positions × diamonds caught, and each time a new state
is created, it is only added to the tree if it is not already in
the matrix. The size of the matrix is dynamic, and the search
starts with a smaller number of possible positions to avoid the
creation of very close states. If a search is finished without a
solution, a bigger matrix is created and the search continued.

2) Incomplete plans:
Using the game simulator is time-consuming and sometimes
an incomplete plan is needed to avoid reaching the time limit
without a solution or time to perform it. However, these plans
might make the level impossible to solve so they should be
used carefully.

Firstly, we find it is safe to catch any diamond that is in
the same platform as the agent with no obstacles in between,
so, when a plan is found for that diamond, the agent performs
it almost right away. The agent is given 20 seconds to find
a complete solution. While at it, the agent saves the best
incomplete plan so far. To see if an incomplete plan is better
than the saved one it has to follow some priorities: have more
diamonds caught; if equal number of diamonds, the plan must
have higher diamonds on higher platforms; if this number is
also equal, the number of nodes in the path must be shorter.
If the 20 seconds pass and no complete solution is found, the
incomplete plan is followed, have one been found.

3) Simulator:
The RRT agents were developed by Soares et al. [2] prior to
the availability of the game physics simulator, and thus, the
authors created their own simulator. Since the game simulator
is now available, we decided to use it in our approach.



4) Replanning:
The main flaw of the RRT agents developed by Soares et al.
[2] is that they do not replan when necessary. Our agents are
capable of checking if they have failed an action and, before
replanning, they try to check if it is possible to continue the
plan from the current state. Sometimes the agents keeps failing
the same action, so they only try it twice, to avoid getting
stuck, and then replan.

B. Control

As mentioned, Soares et al. developed their own simulator
for their agents. During this simulation, extra information is
saved to be used by the controller. This controller has tactics
implemented and also a PID to help guide the agents.

Since we changed the simulator, this controller became not
valid for our solution. We tried to keep the PID to help control
the agents but they kept failing a great number of actions. We
then decided to create a new controller using a different but
similar approach.

Our controller starts by comparing the current velocity with
the one we want to reach at the next point: if greater, the agent
needs to slow down by moving in the opposite direction; if
equal, the agent takes no action to try to maintain the velocity;
if less, then it calculates the acceleration during the last time-
step to estimate the possibility of reaching the desired velocity
in the given distance, moving to the same direction if possible
or to the opposite one if not.

This controller has proven to be effective though it still fails
some tricky actions since position and velocity error margins
are needed when evaluating if the agent reached the desired
state.

IV. TESTS

The competition public levels, were selected for our tests,
and then compared the results with the other available agents.
We ran each level three times and took the average time, the
number of diamonds caught and the number of times the agent
completed the level.

V. RESULTS

In the tables I to IV we can see the results of the 2017
public levels. If an agent could not complete the level once,
the mean was not calculated.

VI. CONCLUSION

After analysing the results, we can conclude that our agent
is capable of solving more levels even if it is not the fastest
when other agents are capable of solving the same level.
Improvements to the controller should be considered, in order
to make our agent faster.

REFERENCES

[1] R. Prada, P. Lopes, J. Catarino, J. Quitério and F. Melo, “The geometry
friends game AI competition,” 2015 IEEE Conference on Computational
Intelligence and Games, CIG 2015 - Proceedings, 2015, pp. 431–438.

[2] R. Soares, F. Leal, Francisco, R. Prada and F. Melo, “Rapidly-Exploring
Random Tree approach for Geometry Friends,” Proceedings of 1st
International Joint Conference of DiGRA and FDG, 2016.

TABLE I
OUR AGENT

Circle Levels Aprox Time (s) Diamonds Completion
1 11 2/2 3/3
2 - 2/3 1/3
3 60 3/3 3/3
4 22 3/3 3/3
5 - 2/2 2/3

Rectangle Levels Aprox Time (s) Diamonds Completion
1 48 3/3 3/3
2 17 2/2 3/3
3 15 2/2 3/3
4 25 2/2 3/3
5 - 0/2 0/3

TABLE II
RRT AGENT

Circle Levels Aprox Time (s) Diamonds Completion
1 - 1/2 0/3
2 - 2/3 0/3
3 - 2/3 1/3
4 18 3/3 3/3
5 - 0/2 0/3

Rectangle Levels Aprox Time (s) Diamonds Completion
1 breaks 0/3 0/3
2 breaks 0/2 0/3
3 breaks 0/2 0/3
4 breaks 0/2 0/3
5 23 2/2 3/3

TABLE III
RL AGENT

Circle Levels Aprox Time (s) Diamonds Completion
1 - 1/2 0/3
2 - 2/3 0/3
3 48 3/3 3/3
4 20 3/3 3/3
5 - 1/2 0/3

TABLE IV
SUBGOAL A* AGENT

Rectangle Levels Aprox Time (s) Diamonds Completion
1 - 0/3 0/3
2 - 1/2 0/3
3 - 1/2 0/3
4 - 0/2 0/3
5 16 2/2 3/3

[3] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” Tech. Rep. TR 98-11, 1998.

[4] S. M. LaValle and J. J. Kuffner, ”Rapidly-exploring random trees:
Progress and prospects,” 4th Workshop on Algorithmic and Compu-
tational Robotics: New Directions, pp. 293–308, 2000.

[5] S. Zickler and M. Veloso, “Efficient physics-based planning: sampling
search via non-deterministic tactics and skills,” The 8th International
Conference on Autonomous Agents and Multiagent Systems, pp. 27–34,
2009.


